Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.012
Filtrar
1.
J Neurosci Res ; 102(4): e25336, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38656664

RESUMO

Chronic neuroinflammation has been implicated in neurodegenerative disease pathogenesis. A key feature of neuroinflammation is neuronal loss and glial activation, including microglia and astrocytes. 4R-cembranoid (4R) is a natural compound that inhibits hippocampal pro-inflammatory cytokines and increases memory function in mice. We used the lipopolysaccharide (LPS) injection model to study the effect of 4R on neuronal density and microglia and astrocyte activation. C57BL/6J wild-type mice were injected with LPS (5 mg/kg) and 2 h later received either 4R (6 mg/kg) or vehicle. Mice were sacrificed after 72 h for analysis of brain pathology. Confocal images of brain sections immunostained for microglial, astrocyte, and neuronal markers were used to quantify cellular hippocampal phenotypes and neurons. Hippocampal lysates were used to measure the expression levels of neuronal nuclear protein (NeuN), inducible nitrous oxide synthase (iNOS), arginase-1, thrombospondin-1 (THBS1), glial cell-derived neurotrophic factor (GDNF), and orosomucoid-2 (ORM2) by western blot. iNOS and arginase-1 are widely used protein markers of pro- and anti-inflammatory microglia, respectively. GDNF promotes neuronal survival, and ORM2 and THBS1 are astrocytic proteins that regulate synaptic plasticity and inhibit microglial activation. 4R administration significantly reduced neuronal loss and the number of pro-inflammatory microglia 72 h after LPS injection. It also decreased the expression of the pro-inflammatory protein iNOS while increasing arginase-1 expression, supporting its anti-inflammatory role. The protein expression of THBS1, GDNF, and ORM2 was increased by 4R. Our data show that 4R preserves the integrity of hippocampal neurons against LPS-induced neuroinflammation in mice.


Assuntos
Hipocampo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Neuroglia , Neurônios , Animais , Lipopolissacarídeos/toxicidade , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/tratamento farmacológico , Fenótipo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia
2.
Acta Neuropathol Commun ; 12(1): 66, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654316

RESUMO

The elderly frequently present impaired blood-brain barrier which is closely associated with various neurodegenerative diseases. However, how the albumin, the most abundant protein in the plasma, leaking through the disrupted BBB, contributes to the neuropathology remains poorly understood. We here demonstrated that mouse serum albumin-activated microglia induced astrocytes to A1 phenotype to remarkably increase levels of Elovl1, an astrocytic synthase for very long-chain saturated fatty acids, significantly promoting VLSFAs secretion and causing neuronal lippoapoptosis through endoplasmic reticulum stress response pathway. Moreover, MSA-activated microglia triggered remarkable tau phosphorylation at multiple sites through NLRP3 inflammasome pathway. Intracerebroventricular injection of MSA into the brains of C57BL/6J mice to a similar concentration as in patient brains induced neuronal apoptosis, neuroinflammation, increased tau phosphorylation, and decreased the spatial learning and memory abilities, while Elovl1 knockdown significantly prevented the deleterious effect of MSA. Overall, our study here revealed that MSA induced tau phosphorylation and neuron apoptosis based on MSA-activated microglia and astrocytes, respectively, showing the critical roles of MSA in initiating the occurrence of tauopathies and cognitive decline, and providing potential therapeutic targets for MSA-induced neuropathology in multiple neurodegenerative disorders.


Assuntos
Apoptose , Camundongos Endogâmicos C57BL , Neurônios , Tauopatias , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Tauopatias/patologia , Tauopatias/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Neurônios/efeitos dos fármacos , Camundongos , Albumina Sérica/metabolismo , Masculino , Microglia/metabolismo , Microglia/efeitos dos fármacos , Microglia/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Astrócitos/efeitos dos fármacos , Humanos , Proteínas tau/metabolismo , Elongases de Ácidos Graxos/metabolismo
3.
Nature ; 627(8004): 604-611, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448582

RESUMO

Human brains vary across people and over time; such variation is not yet understood in cellular terms. Here we describe a relationship between people's cortical neurons and cortical astrocytes. We used single-nucleus RNA sequencing to analyse the prefrontal cortex of 191 human donors aged 22-97 years, including healthy individuals and people with schizophrenia. Latent-factor analysis of these data revealed that, in people whose cortical neurons more strongly expressed genes encoding synaptic components, cortical astrocytes more strongly expressed distinct genes with synaptic functions and genes for synthesizing cholesterol, an astrocyte-supplied component of synaptic membranes. We call this relationship the synaptic neuron and astrocyte program (SNAP). In schizophrenia and ageing-two conditions that involve declines in cognitive flexibility and plasticity1,2-cells divested from SNAP: astrocytes, glutamatergic (excitatory) neurons and GABAergic (inhibitory) neurons all showed reduced SNAP expression to corresponding degrees. The distinct astrocytic and neuronal components of SNAP both involved genes in which genetic risk factors for schizophrenia were strongly concentrated. SNAP, which varies quantitatively even among healthy people of similar age, may underlie many aspects of normal human interindividual differences and may be an important point of convergence for multiple kinds of pathophysiology.


Assuntos
Envelhecimento , Astrócitos , Neurônios , Córtex Pré-Frontal , Esquizofrenia , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Envelhecimento/metabolismo , Envelhecimento/patologia , Astrócitos/citologia , Astrócitos/metabolismo , Astrócitos/patologia , Colesterol/metabolismo , Cognição , Neurônios GABAérgicos/metabolismo , Predisposição Genética para Doença , Glutamina/metabolismo , Saúde , Individualidade , Inibição Neural , Plasticidade Neuronal , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Análise da Expressão Gênica de Célula Única , Sinapses/genética , Sinapses/metabolismo , Sinapses/patologia , Membranas Sinápticas/química , Membranas Sinápticas/metabolismo
4.
Chem Biol Drug Des ; 103(3): e14481, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38458969

RESUMO

Studies have shown that saikosaponin D (SSD) has favorable neurotherapeutic effects. Therefore, the objective of this study was to explore the efficacy and possible molecular mechanisms of SSD on pilocarpine (PP)-induced astrocyte injury. Primary astrocytes were isolated from juvenile rats and identified using immunofluorescence. The cells were treated with PP and/or SSD for 6 h and 12 h, respectively, followed by measurement of their viability through 3-(4,5-dimethylthiazol)-2,5-diphenyl-tetrazolium bromide (MTT) assay. Next, quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure the expression levels of Glial fibrillary acidic protein (GFAP), C3, S100 calcium binding protein A10 (S100a10), pentraxin 3 (Ptx3), toll-like receptor 4 (TLR4), and RAG in astrocytes after different treatments. Enzyme-linked immunosorbent assay and biochemical tests were utilized to evaluate the level of inflammatory factors [interleukin (IL)-1ß, IL-6, and tumor necrosis factor alpha (TNF-α)] secreted by cells and the content of oxidative stress-related factors (malondialdehyde [MDA] and glutathione [GSH]) or enzyme activity (catalase [CAT] and glutathione peroxidase [GPX]) in cells. The JC-1 mitochondrial membrane potential (MMP) fluorescence probe was used to measure the MMP in astrocytes. Additionally, western blot was applied to test the expression of proteins related to the nod-like receptor protein 3 (NLRP3)/caspase-1 signaling pathway. PP treatment (1 mM) induced cell injury by significantly reducing the viability of astrocytes and expression of cellular markers. SSD treatment (4 µM) had no toxicity to astrocytes. Besides, SSD (4 µM) treatment could significantly up-regulate the cell viability and marker expression of PP-induced astrocytes. Furthermore, SSD could be employed to inhibit inflammation (reduce IL-1ß, IL-6, and TNF-α levels) and oxidative stress (decrease MDA level, elevate GSH level, the activity of CAT and GPX), and ameliorate mitochondrial dysfunction (upregulate JC-1 ratio) in PP-induced astrocytes. Moreover, further mechanism exploration revealed that SSD treatment significantly reduced the activity of the NLRP3/caspase-1 signaling pathway activated by PP induction. SSD increased cell viability, inhibited inflammation and oxidative stress response, and ameliorated mitochondrial dysfunction in PP-induced astrocyte injury model, thus playing a neuroprotective role. The mechanism of SSD may be related to the inhibition of the NLRP3/caspase-1 inflammasome.


Assuntos
Benzimidazóis , Carbocianinas , Doenças Mitocondriais , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ácido Oleanólico/análogos & derivados , Saponinas , Ratos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Pilocarpina/toxicidade , Fator de Necrose Tumoral alfa/genética , Caspases/metabolismo , Interleucina-6 , Transdução de Sinais , Inflamação/metabolismo
5.
Brain Res Bull ; 209: 110922, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458135

RESUMO

Sepsis causes significant morbidity and mortality worldwide, most surviving patients show acute or chronic mental disorders, which are known as sepsis-associated encephalopathy (SAE). SAE involves many pathological processes, including the blood-brain barrier (BBB) damage. The BBB is located at the interface between the central nervous system and the surrounding environment, which protects the central nervous system (CNS) from the invasion of exogenous molecules, harmful substances or microorganisms in the blood. Recently, a growing number of studies have indicated that the BBB destruction was involved in SAE and played an important role in SAE-induced brain injury. In the present review, we firstly reveal the pathological processes of SAE such as the neurotransmitter disorders, oxidative stress, immune dysfunction and BBB destruction. Moreover, we introduce the structure of BBB, and describe the immune cells including microglia and astrocytes that participate in the BBB destruction after SAE. Furthermore, in view of the current research on non-coding RNAs (ncRNAs), we explain the regulatory mechanism of ncRNAs including long noncoding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) on BBB in the processes of SAE. Finally, we propose some challenges and perspectives of regulating BBB functions in SAE. Hence, on the basis of these effects, both immune cells and ncRNAs may be developed as therapeutic targets to protect BBB for SAE patients.


Assuntos
Encefalopatia Associada a Sepse , Sepse , Humanos , Barreira Hematoencefálica/patologia , Astrócitos/patologia , Transporte Biológico
6.
Nature ; 627(8005): 865-872, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509377

RESUMO

Disease-associated astrocyte subsets contribute to the pathology of neurologic diseases, including multiple sclerosis and experimental autoimmune encephalomyelitis1-8 (EAE), an experimental model for multiple sclerosis. However, little is known about the stability of these astrocyte subsets and their ability to integrate past stimulation events. Here we report the identification of an epigenetically controlled memory astrocyte subset that exhibits exacerbated pro-inflammatory responses upon rechallenge. Specifically, using a combination of single-cell RNA sequencing, assay for transposase-accessible chromatin with sequencing, chromatin immunoprecipitation with sequencing, focused interrogation of cells by nucleic acid detection and sequencing, and cell-specific in vivo CRISPR-Cas9-based genetic perturbation studies we established that astrocyte memory is controlled by the metabolic enzyme ATP-citrate lyase (ACLY), which produces acetyl coenzyme A (acetyl-CoA) that is used by histone acetyltransferase p300 to control chromatin accessibility. The number of ACLY+p300+ memory astrocytes is increased in acute and chronic EAE models, and their genetic inactivation ameliorated EAE. We also detected the pro-inflammatory memory phenotype in human astrocytes in vitro; single-cell RNA sequencing and immunohistochemistry studies detected increased numbers of ACLY+p300+ astrocytes in chronic multiple sclerosis lesions. In summary, these studies define an epigenetically controlled memory astrocyte subset that promotes CNS pathology in EAE and, potentially, multiple sclerosis. These findings may guide novel therapeutic approaches for multiple sclerosis and other neurologic diseases.


Assuntos
Astrócitos , Encefalomielite Autoimune Experimental , Memória Epigenética , Esclerose Múltipla , Animais , Feminino , Humanos , Masculino , Camundongos , Acetilcoenzima A/metabolismo , Astrócitos/enzimologia , Astrócitos/metabolismo , Astrócitos/patologia , ATP Citrato (pro-S)-Liase/metabolismo , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Sequenciamento de Cromatina por Imunoprecipitação , Sistemas CRISPR-Cas , Encefalomielite Autoimune Experimental/enzimologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Inflamação/enzimologia , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Esclerose Múltipla/enzimologia , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Análise da Expressão Gênica de Célula Única , Transposases/metabolismo
7.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474060

RESUMO

The pathophysiology of nonketotic hyperglycinemia (NKH), a rare neuro-metabolic disorder associated with severe brain malformations and life-threatening neurological manifestations, remains incompletely understood. Therefore, a valid human neural model is essential. We aimed to investigate the impact of GLDC gene variants, which cause NKH, on cellular fitness during the differentiation process of human induced pluripotent stem cells (iPSCs) into iPSC-derived astrocytes and to identify sustainable mechanisms capable of overcoming GLDC deficiency. We developed the GLDC27-FiPS4F-1 line and performed metabolomic, mRNA abundance, and protein analyses. This study showed that although GLDC27-FiPS4F-1 maintained the parental genetic profile, it underwent a metabolic switch to an altered serine-glycine-one-carbon metabolism with a coordinated cell growth and cell cycle proliferation response. We then differentiated the iPSCs into neural progenitor cells (NPCs) and astrocyte-lineage cells. Our analysis showed that GLDC-deficient NPCs had shifted towards a more heterogeneous astrocyte lineage with increased expression of the radial glial markers GFAP and GLAST and the neuronal markers MAP2 and NeuN. In addition, we detected changes in other genes related to serine and glycine metabolism and transport, all consistent with the need to maintain glycine at physiological levels. These findings improve our understanding of the pathology of nonketotic hyperglycinemia and offer new perspectives for therapeutic options.


Assuntos
Hiperglicinemia não Cetótica , Células-Tronco Pluripotentes Induzidas , Humanos , Hiperglicinemia não Cetótica/genética , Hiperglicinemia não Cetótica/patologia , Glicina Desidrogenase (Descarboxilante)/genética , Astrócitos/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Glicina , Serina
8.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38397023

RESUMO

Microglia and astrocytes are essential in sustaining physiological networks in the central nervous system, with their ability to remodel the extracellular matrix, being pivotal for synapse plasticity. Recent findings have challenged the traditional view of homogenous glial populations in the brain, uncovering morphological, functional, and molecular heterogeneity among glial cells. This diversity has significant implications for both physiological and pathological brain states. In the present study, we mechanically induced a Schaffer collateral lesion (SCL) in mouse entorhino-hippocampal slice cultures to investigate glial behavior, i.e., microglia and astrocytes, under metalloproteinases (MMPs) modulation in the lesioned area, CA3, and the denervated region, CA1. We observed distinct response patterns in the microglia and astrocytes 3 days after the lesion. Notably, GFAP-expressing astrocytes showed no immediate changes post-SCL. Microglia responses varied depending on their anatomical location, underscoring the complexity of the hippocampal neuroglial network post-injury. The MMPs inhibitor GM6001 did not affect microglial reactions in CA3, while increasing the number of Iba1-expressing cells in CA1, leading to a withdrawal of their primary branches. These findings highlight the importance of understanding glial regionalization following neural injury and MMPs modulation and pave the way for further research into glia-targeted therapeutic strategies for neurodegenerative disorders.


Assuntos
Microglia , Colaterais de Schaffer , Camundongos , Animais , Microglia/patologia , Hipocampo/patologia , Astrócitos/patologia , Metaloproteinases da Matriz
9.
J Alzheimers Dis ; 97(4): 1939-1950, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38339931

RESUMO

Background: Vitamin D has neuroprotective and immunomodulating functions that may impact glial cell function in the brain. Previously, we reported molecular and behavioral changes caused by deficiency and supplementation of vitamin D in an Alzheimer's disease (AD) mouse model. Recent studies have highlighted reactive astrocytes as a new therapeutic target for AD treatment. However, the mechanisms underlying the therapeutic effects of vitamin D on the glial cells of AD remain unclear. Objective: To investigate the potential association between vitamin D deficiency/supplementation and the pathological progression of AD, including amyloid-ß (Aß) pathology and reactive astrogliosis. Methods: Transgenic hemizygous 5XFAD male mice were subjected to different dietary interventions and intraperitoneal vitamin D injections to examine the effects of vitamin D deficiency and supplementation on AD. Brain tissue was then analyzed using immunohistochemistry for Aß plaques, microglia, and astrocytes, with quantifications performed via ImageJ software. Results: Our results demonstrated that vitamin D deficiency exacerbated Aß plaque formation and increased GABA-positive reactive astrocytes in AD model mice, while vitamin D supplementation ameliorated these effects, leading to a reduction in Aß plaques and GABA-positive astrocytes. Conclusions: Our findings highlight the significant impact of vitamin D status on Aß pathology and reactive astrogliosis, underscoring its potential role in the prevention and treatment of AD. This study provides the first in vivo evidence of the association between vitamin D and reactive astrogliosis in AD model mice, indicating the potential for targeting vitamin D levels as a novel therapeutic approach for AD.


Assuntos
Doença de Alzheimer , Deficiência de Vitamina D , Masculino , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Astrócitos/patologia , Vitamina D/uso terapêutico , Gliose/tratamento farmacológico , Gliose/patologia , Peptídeos beta-Amiloides/uso terapêutico , Camundongos Transgênicos , Placa Amiloide/patologia , Vitaminas/farmacologia , Vitaminas/uso terapêutico , Ácido gama-Aminobutírico , Modelos Animais de Doenças
10.
J Neuropathol Exp Neurol ; 83(3): 181-193, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38300796

RESUMO

This study examined the frequency of chronic traumatic encephalopathy-neuropathologic change (CTE-NC) and aging-related tau astrogliopathy (ARTAG) in community-dwelling older adults and tested the hypothesis that these tau pathologies are associated with a history of moderate-to-severe traumatic brain injury (msTBI), defined as a TBI with loss of consciousness >30 minutes. We evaluated CTE-NC, ARTAG, and Alzheimer disease pathologies in 94 participants with msTBI and 94 participants without TBI matched by age, sex, education, and dementia status TBI from the Rush community-based cohorts. Six (3%) of brains showed the pathognomonic lesion of CTE-NC; only 3 of these had a history of msTBI. In contrast, ARTAG was common in older brains (gray matter ARTAG = 77%; white matter ARTAG = 54%; subpial ARTAG = 51%); there were no differences in severity, type, or distribution of ARTAG pathology with respect to history of msTBI. Furthermore, those with msTBI did not have higher levels of PHF-tau tangles density but had higher levels of amyloid-ß load (Estimate = 0.339, SE = 0.164, p = 0.040). These findings suggest that CTE-NC is infrequent while ARTAG is common in the community and that both pathologies are unrelated to msTBI. The association of msTBI with amyloid-ß, rather than with tauopathies suggests differential mechanisms of neurodegeneration in msTBI.


Assuntos
Doença de Alzheimer , Lesões Encefálicas Traumáticas , Encefalopatia Traumática Crônica , Humanos , Idoso , Idoso de 80 Anos ou mais , Encefalopatia Traumática Crônica/patologia , Vida Independente , Astrócitos/patologia , Proteínas tau/metabolismo , Envelhecimento/patologia , Encéfalo/patologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides
11.
J Neurosci ; 44(14)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38395613

RESUMO

Tumor necrosis factor α (TNF) mediates homeostatic synaptic plasticity (HSP) in response to chronic activity blockade, and prior work has established that it is released from glia. Here we demonstrate that astrocytes are the necessary source of TNF during HSP. Hippocampal cultures from rats of both sexes depleted of microglia still will increase TNF levels following activity deprivation and still express TTX-driven HSP. Slice cultures from mice of either sex with a conditional deletion of TNF from microglia also express HSP, but critically, slice cultures with a conditional deletion of TNF from astrocytes do not. In astrocytes, glutamate signaling is sufficient to reduce NFκB signaling and TNF mRNA levels. Further, chronic TTX treatment increases TNF in an NFκB-dependent manner, although NFκB signaling is dispensable for the neuronal response to TTX-driven HSP. Thus, astrocytes can sense neuronal activity through glutamate spillover and increase TNF production when activity falls, to drive HSP through the production of TNF.


Assuntos
Astrócitos , Fator de Necrose Tumoral alfa , Ratos , Camundongos , Animais , Astrócitos/patologia , Transdução de Sinais , Plasticidade Neuronal , Glutamatos
12.
Curr Opin Cell Biol ; 87: 102340, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401182

RESUMO

Glial fibrillary acidic protein (GFAP) is an intermediate filament (IF) protein expressed in specific types of glial cells in the nervous system. The expression of GFAP is highly regulated during brain development and in neurological diseases. The presence of distinct GFAP-isoforms in various cell types, developmental stages, and diseases indicates that GFAP (post-)transcriptional regulation has a role in glial cell physiology and pathology. GFAP-isoforms differ in sub-cellular localisation, IF-network assembly properties, and IF-dynamics which results in distinct molecular interactions and mechanical properties of the IF-network. Therefore, GFAP (post-)transcriptional regulation is likely a mechanism by which radial glia, astrocytes, and glioma cells can modulate cellular function.


Assuntos
Astrócitos , Filamentos Intermediários , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Filamentos Intermediários/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Isoformas de Proteínas/genética , Regulação da Expressão Gênica
13.
Adv Sci (Weinh) ; 11(15): e2304609, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342629

RESUMO

Accumulating evidence suggests that changes in the tumor microenvironment caused by radiotherapy are closely related to the recurrence of glioma. However, the mechanisms by which such radiation-induced changes are involved in tumor regrowth have not yet been fully investigated. In the present study, how cranial irradiation-induced senescence in non-neoplastic brain cells contributes to glioma progression is explored. It is observed that senescent brain cells facilitated tumor regrowth by enhancing the peripheral recruitment of myeloid inflammatory cells in glioblastoma. Further, it is identified that astrocytes are one of the most susceptible senescent populations and that they promoted chemokine secretion in glioma cells via the senescence-associated secretory phenotype. By using senolytic agents after radiotherapy to eliminate these senescent cells substantially prolonged survival time in preclinical models. The findings suggest the tumor-promoting role of senescent astrocytes in the irradiated glioma microenvironment and emphasize the translational relevance of senolytic agents for enhancing the efficacy of radiotherapy in gliomas.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Astrócitos/patologia , Senoterapia , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Microambiente Tumoral
14.
Ageing Res Rev ; 95: 102223, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325753

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized by progressive cognitive decline and the accumulation of amyloid-beta plaques, tau tangles, and neuroinflammation in the brain. Postoperative cognitive dysfunction (POCD) is a prevalent and debilitating condition characterized by cognitive decline following neuroinflammation and oxidative stress induced by procedures. POCD and AD are two conditions that share similarities in the underlying mechanisms and pathophysiology. Compared to normal aging individuals, individuals with POCD are at a higher risk for developing AD. Emerging evidence suggests that astrocytes, the most abundant glial cells in the central nervous system, play a critical role in the pathogenesis of these conditions. Comprehensive functions of astrocyte in AD has been extensively explored, but very little is known about POCD may experience late-onset AD pathogenesis. Herein, in this context, we mainly explore the multifaceted roles of astrocytes in the context of POCD, highlighting their involvement in neuroinflammation, neurotransmitter regulation, synaptic plasticity and neurotrophic support, and discuss how POCD may augment the onset of AD. Additionally, we discuss potential therapeutic strategies targeting astrocytes to mitigate or prevent POCD, which hold promise for improving the quality of life for patients undergoing surgeries and against AD in the future.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Complicações Cognitivas Pós-Operatórias , Humanos , Astrócitos/patologia , Complicações Cognitivas Pós-Operatórias/patologia , Doenças Neuroinflamatórias , Qualidade de Vida , Doença de Alzheimer/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Peptídeos beta-Amiloides
15.
Acta Neuropathol ; 147(1): 31, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310187

RESUMO

Anti-glial fibrillary acidic protein (GFAP) meningoencephalomyelitis (autoimmune GFAP astrocytopathy) is a new autoimmune central nervous system (CNS) disease diagnosable by the presence of anti-GFAP autoantibodies in the cerebrospinal fluid and presents as meningoencephalomyelitis in the majority of patients. Only few neuropathological reports are available and little is known about the pathogenic mechanisms. We performed a histopathological study of two autopsies and nine CNS biopsies of patients with anti-GFAP autoantibodies and found predominantly a lymphocytic and in one autopsy case a granulomatous inflammatory phenotype. Inflammatory infiltrates were composed of B and T cells, including tissue-resident memory T cells. Although obvious astrocytic damage was absent in the GFAP-staining, we found cytotoxic T cell-mediated reactions reflected by the presence of CD8+/perforin+/granzyme A/B+ cells, polarized towards astrocytes. MHC-class-I was upregulated in reactive astrocytes of all biopsies and two autopsies but not in healthy controls. Importantly, we observed a prominent immunoreactivity of astrocytes with the complement factor C4d. Finally, we provided insight into an early phase of GFAP autoimmunity in an autopsy of a pug dog encephalitis that was characterized by marked meningoencephalitis with selective astrocytic damage with loss of GFAP and AQP4 in the lesions.Our histopathological findings indicate that a cytotoxic T cell-mediated immune reaction is present in GFAP autoimmunity. Complement C4d deposition on astrocytes could either represent the cause or consequence of astrocytic reactivity. Selective astrocytic damage is prominent in the early phase of GFAP autoimmunity in a canine autopsy case, but mild or absent in subacute and chronic stages in human disease, probably due to the high regeneration potential of astrocytes. The lymphocytic and granulomatous phenotypes might reflect different stages of lesion development or patient-specific modifications of the immune response. Future studies will be necessary to investigate possible implications of pathological subtypes for clinical disease course and therapeutic strategies.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Encefalomielite , Meningoencefalite , Humanos , Animais , Cães , Proteína Glial Fibrilar Ácida/metabolismo , Encefalomielite/patologia , Astrócitos/patologia , Doenças Autoimunes do Sistema Nervoso/líquido cefalorraquidiano , Doenças Autoimunes do Sistema Nervoso/terapia , Meningoencefalite/líquido cefalorraquidiano , Meningoencefalite/patologia , Autoanticorpos
16.
Commun Biol ; 7(1): 156, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321118

RESUMO

The hijacking of early developmental programs is a canonical feature of gliomas where neoplastic cells resemble neurodevelopmental lineages and possess mechanisms of stem cell resilience. Given these parallels, uncovering how and when in developmental time gliomagenesis intersects with normal trajectories can greatly inform our understanding of tumor biology. Here, we review how elapsing time impacts the developmental principles of astrocyte (AS) and oligodendrocyte (OL) lineages, and how these same temporal programs are replicated, distorted, or circumvented in pathological settings such as gliomas. Additionally, we discuss how normal gliogenic processes can inform our understanding of the temporal progression of gliomagenesis, including when in developmental time gliomas originate, thrive, and can be pushed towards upon therapeutic coercion.


Assuntos
Glioma , Humanos , Glioma/patologia , Células-Tronco/patologia , Neurogênese , Astrócitos/patologia , Oligodendroglia
17.
Acta Neuropathol ; 147(1): 48, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418708

RESUMO

Tuberous Sclerosis Complex (TSC) is a multisystem genetic disorder characterized by the development of benign tumors in various organs, including the brain, and is often accompanied by epilepsy, neurodevelopmental comorbidities including intellectual disability and autism. A key hallmark of TSC is the hyperactivation of the mechanistic target of rapamycin (mTOR) signaling pathway, which induces alterations in cortical development and metabolic processes in astrocytes, among other cellular functions. These changes could modulate seizure susceptibility, contributing to the progression of epilepsy and its associated comorbidities. Epilepsy is characterized by dysregulation of calcium (Ca2+) channels and intracellular Ca2+ dynamics. These factors contribute to hyperexcitability, disrupted synaptogenesis, and altered synchronization of neuronal networks, all of which contribute to seizure activity. This study investigates the intricate interplay between altered Ca2+ dynamics, mTOR pathway dysregulation, and cellular metabolism in astrocytes. The transcriptional profile of TSC patients revealed significant alterations in pathways associated with cellular respiration, ER and mitochondria, and Ca2+ regulation. TSC astrocytes exhibited lack of responsiveness to various stimuli, compromised oxygen consumption rate and reserve respiratory capacity underscoring their reduced capacity to react to environmental changes or cellular stress. Furthermore, our study revealed significant reduction of store operated calcium entry (SOCE) along with strong decrease of basal mitochondrial Ca2+ concentration and Ca2+ influx in TSC astrocytes. In addition, we observed alteration in mitochondrial membrane potential, characterized by increased depolarization in TSC astrocytes. Lastly, we provide initial evidence of structural abnormalities in mitochondria within TSC patient-derived astrocytes, suggesting a potential link between disrupted Ca2+ signaling and mitochondrial dysfunction. Our findings underscore the complexity of the relationship between Ca2+ signaling, mitochondria dynamics, apoptosis, and mTOR hyperactivation. Further exploration is required to shed light on the pathophysiology of TSC and on TSC associated neuropsychiatric disorders offering further potential avenues for therapeutic development.


Assuntos
Epilepsia , Esclerose Tuberosa , Humanos , Astrócitos/patologia , Sinalização do Cálcio , Esclerose Tuberosa/patologia , Cálcio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Epilepsia/genética , Homeostase , Convulsões
18.
J Neuroinflammation ; 21(1): 38, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302975

RESUMO

BACKGROUND: Herpes simplex virus (HSV) encephalitis (HSE) is a serious and potentially life-threatening disease, affecting both adults and newborns. Progress in understanding the virus and host factors involved in neonatal HSE has been hampered by the limitations of current brain models that do not fully recapitulate the tissue structure and cell composition of the developing human brain in health and disease. Here, we developed a human fetal organotypic brain slice culture (hfOBSC) model and determined its value in mimicking the HSE neuropathology in vitro. METHODS: Cell viability and tissues integrity were determined by lactate dehydrogenase release in supernatant and immunohistological (IHC) analyses. Brain slices were infected with green fluorescent protein (GFP-) expressing HSV-1 and HSV-2. Virus replication and spread were determined by confocal microscopy, PCR and virus culture. Expression of pro-inflammatory cytokines and chemokines were detected by PCR. Cell tropism and HSV-induced neuropathology were determined by IHC analysis. Finally, the in situ data of HSV-infected hfOBSC were compared to the neuropathology detected in human HSE brain sections. RESULTS: Slicing and serum-free culture conditions were optimized to maintain the viability and tissue architecture of ex vivo human fetal brain slices for at least 14 days at 37 °C in a CO2 incubator. The hfOBSC supported productive HSV-1 and HSV-2 infection, involving predominantly infection of neurons and astrocytes, leading to expression of pro-inflammatory cytokines and chemokines. Both viruses induced programmed cell death-especially necroptosis-in infected brain slices at later time points after infection. The virus spread, cell tropism and role of programmed cell death in HSV-induced cell death resembled the neuropathology of HSE. CONCLUSIONS: We developed a novel human brain culture model in which the viability of the major brain-resident cells-including neurons, microglia, astrocytes and oligodendrocytes-and the tissue architecture is maintained for at least 2 weeks in vitro under serum-free culture conditions. The close resemblance of cell tropism, spread and neurovirulence of HSV-1 and HSV-2 in the hfOBSC model with the neuropathological features of human HSE cases underscores its potential to detail the pathophysiology of other neurotropic viruses and as preclinical model to test novel therapeutic interventions.


Assuntos
Encefalite por Herpes Simples , Herpes Simples , Herpesvirus Humano 1 , Recém-Nascido , Adulto , Humanos , Astrócitos/patologia , Necroptose , Herpes Simples/patologia , Encéfalo/patologia , Citocinas , Neurônios/patologia , Quimiocinas
19.
Artigo em Inglês | MEDLINE | ID: mdl-38175667

RESUMO

Senescent astrocyte accumulation in the brain during normal aging is a driver of age-related neurodegenerative diseases such as Alzheimer's disease. However, the molecular events underlying astrocyte senescence in Alzheimer's disease are not fully understood. In this study, we demonstrated that senescent astrocytes display a secretory phenotype known as the senescence-associated secretory phenotype (SASP), which is associated with the upregulation of various proinflammatory factors and the downregulation of neurotrophic growth factors (eg, NGF and BDNF), resulting in a decrease in astrocyte-mediated neuroprotection and increased risk of neurodegeneration. We found that SerpinA3N is upregulated in senescent primary mouse astrocytes after serial passaging in vitro or by H2O2 treatment. Further exploration of the underlying mechanism revealed that SerpinA3N deficiency protects against senescent astrocyte-induced neurodegeneration by suppressing SASP-related factors and inducing neurotrophic growth factors. Brain tissues from Alzheimer's disease model mice possessed increased numbers of senescent astrocytes. Moreover, senescent astrocytes exhibited upregulated SerpinA3N expression in vitro and in vivo, confirming that our cell model recapitulated the in vivo pathology of these neurodegenerative diseases. Altogether, our study reveals a novel molecular strategy to regulate the secretory phenotype of senescent astrocytes and implies that SerpinA3N and its regulatory mechanisms may be potential targets for delaying brain aging and aging-related neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Animais , Camundongos , Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Senescência Celular/fisiologia , Peróxido de Hidrogênio/metabolismo , Doenças Neurodegenerativas/metabolismo , Fenótipo
20.
Rinsho Shinkeigaku ; 64(2): 75-84, 2024 Feb 23.
Artigo em Japonês | MEDLINE | ID: mdl-38281748

RESUMO

Glial fibrillary acidic protein (GFAP) antibody-associated disorders (AD) were recently proposed to be immune-mediated neurological disorders. The pathogenesis of GFAP antibody-AD is poorly understood. Pathologically, there is a marked infiltration of large numbers of lymphocytes, including CD8+ and CD4+ T cells, into the meningeal and brain parenchyma, especially around the perivascular areas. GFAP-specific cytotoxic T cells are considered to be the effector cells of GFAP antibody-AD. The common phenotype of GFAP antibody-AD includes meningoencephalitis with or without myelitis. During the clinical disease course, patients present with consciousness disturbances, urinary dysfunction, movement disorders, meningeal irritation, and cognitive dysfunction. The detection of GFAP antibodies in the cerebrospinal fluid (CSF) by cell-based assay is essential for a diagnosis of GFAP antibody-AD. The CSF can be examined for lymphocyte-predominant pleocytosis and elevated protein levels. Brain linear perivascular radial enhancement patterns are observed in about half of GFAP antibody-AD patients. Spinal cord magnetic resonance imaging is used to detect longitudinal extensive spinal cord lesions. Although corticosteroid therapy is generally effective, some patients have a poor prognosis and relapse.


Assuntos
Meningoencefalite , Mielite , Humanos , Proteína Glial Fibrilar Ácida/genética , Encéfalo , Meningoencefalite/diagnóstico , Autoanticorpos/líquido cefalorraquidiano , Astrócitos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...